Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
-
List of GRID core datasets
-
The remote environmental screening dataset shows the level of risk of environmental conditions associated with pollutants storage sites. It relies on a methodology developed by FAO in the toolkit “Environmental Management Tool Kit for Obsolete Pesticides” (available here: http://www.fao.org/3/i0473e/i0473e.pdf) to calculate the environmental factor (Fe) of the pollutants storage sites. The FAO methodology has been modified and adapted by UNEP/GRID Geneva to include only questions with a geographical dimension for which good quality data exist at a satisfying resolution. The outcome consists in a remote environmental screening at country level (50 meters resolution) that is calculated as followed: Score risk= (natural disasters x 10) + (human settlements x 5) + (urban areas x 5) + (public facilities x 5) + (waterbodies x 5) + (crops x 3) + (protected areas x 1) More information about the UNEP/GRID methodology available on: https://owncloud.unepgrid.ch/index.php/s/5LPUDTxUEzIFka5
-
The remote environmental screening dataset shows the level of risk of environmental conditions associated with pollutants storage sites. It relies on a methodology developed by FAO in the toolkit “Environmental Management Tool Kit for Obsolete Pesticides” (available here: http://www.fao.org/3/i0473e/i0473e.pdf) to calculate the environmental factor (Fe) of the pollutants storage sites. The FAO methodology has been modified and adapted by UNEP/GRID Geneva to include only questions with a geographical dimension for which good quality data exist at a satisfying resolution. The outcome consists in a remote environmental screening at country level (50 meters resolution) that is calculated as followed: Score risk= (natural disasters x 10) + (human settlements x 5) + (urban areas x 5) + (public facilities x 5) + (waterbodies x 5) + (crops x 3) + (protected areas x 1) More information about the UNEP/GRID methodology available on: https://owncloud.unepgrid.ch/index.php/s/5LPUDTxUEzIFka5
-
The remote environmental screening dataset shows the level of risk of environmental conditions associated with pollutants storage sites. It relies on a methodology developed by FAO in the toolkit “Environmental Management Tool Kit for Obsolete Pesticides” (available here: http://www.fao.org/3/i0473e/i0473e.pdf) to calculate the environmental factor (Fe) of the pollutants storage sites. The FAO methodology has been modified and adapted by UNEP/GRID Geneva to include only questions with a geographical dimension for which good quality data exist at a satisfying resolution. The outcome consists in a remote environmental screening at country level (50 meters resolution) that is calculated as followed: Score risk= (natural disasters x 10) + (human settlements x 5) + (urban areas x 5) + (public facilities x 5) + (waterbodies x 5) + (crops x 3) + (protected areas x 1) More information about the UNEP/GRID methodology available on: https://owncloud.unepgrid.ch/index.php/s/5LPUDTxUEzIFka5
-
EcoDRR global classification scheme based on spatial combination of ecosystem coverage and natural hazard physical exposure. The ecosystem data-set contains area percentage of each considered ecosystem in a 100 square kilometer cell. For a specific ecosystem, a 0.01 degree resolution raster of coverage real area is generated. In the case of forest coverage, the classification of the source datasets was grouped in three classes: woodland, open forest and closed forest. The quality of ecosystem in a 100 km2 grid cell is expressed as its area percentage, considering only cell land area for forest ecosystem. Sources: This dataset describes the current status of land areas that could potentially be forested according to climate (includes forest, open forest, woodlands). Intact forests and Fragmented/managed forests were not considered to need restoration. Potential forest lands that are currently non-forest were assumed to be deforested. Forest lands with significantly reduced canopy coverage were considered to be partially deforested (for example, potential closed forest with canopy coverage less than 45%). Both deforested and partially deforested lands considered to be restoration opportunity areas. Credit: Peter Potapov, Lars Laestadius, and Susan Minnemeyer. 2011. Global map of forest cover and condition. World Resources Institute: Washington, DC. Online at www.wri.org/forest-restoration-atlas.
-
The remote environmental screening dataset shows the level of risk of environmental conditions associated with pollutants storage sites. It relies on a methodology developed by FAO in the toolkit “Environmental Management Tool Kit for Obsolete Pesticides” (available here: http://www.fao.org/3/i0473e/i0473e.pdf) to calculate the environmental factor (Fe) of the pollutants storage sites. The FAO methodology has been modified and adapted by UNEP/GRID Geneva to include only questions with a geographical dimension for which good quality data exist at a satisfying resolution. The outcome consists in a remote environmental screening at country level (50 meters resolution) that is calculated as followed: Score risk= (natural disasters x 10) + (human settlements x 5) + (urban areas x 5) + (public facilities x 5) + (waterbodies x 5) + (crops x 3) + (protected areas x 1) More information about the UNEP/GRID methodology available on: https://owncloud.unepgrid.ch/index.php/s/5LPUDTxUEzIFka5
-
The remote environmental screening dataset shows the level of risk of environmental conditions associated with pollutants storage sites. It relies on a methodology developed by FAO in the toolkit “Environmental Management Tool Kit for Obsolete Pesticides” (available here: http://www.fao.org/3/i0473e/i0473e.pdf) to calculate the environmental factor (Fe) of the pollutants storage sites. The FAO methodology has been modified and adapted by UNEP/GRID Geneva to include only questions with a geographical dimension for which good quality data exist at a satisfying resolution. The outcome consists in a remote environmental screening at country level (50 meters resolution) that is calculated as followed: Score risk= (natural disasters x 10) + (human settlements x 5) + (urban areas x 5) + (public facilities x 5) + (waterbodies x 5) + (crops x 3) + (protected areas x 1) More information about the UNEP/GRID methodology available on: https://owncloud.unepgrid.ch/index.php/s/5LPUDTxUEzIFka5
-
Human pressures on the ocean are thought to be increasing globally, yet we know little about their patterns of cumulative change, which pressures are most responsible for change, and which places are experiencing the greatest increases. Managers and policymakers require such information to make strategic decisions and monitor progress towards management objectives. Here we calculate and map recent change over 5 years in cumulative impacts to marine ecosystems globally from fishing, climate change, and ocean- and land-based stressors. Nearly 66% of the ocean and 77% of national jurisdictions show increased human impact, driven mostly by climate change pressures. Five percent of the ocean is heavily impacted with increasing pressures, requiring management attention. Ten percent has very low impact with decreasing pressures. Our results provide large-scale guidance about where to prioritize management efforts and affirm the importance of addressing climate change to maintain and improve the condition of marine ecosystems. Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6:7615 doi: 10.1038/ncomms8615 (2015).
-
Anomaly for the period 2041-2060 compared to climatological data (1979-2013) on precipitation and temperature data based on two different scenarios (RCP4.5 and RCP8.5). The layer is calculated at UNEP/GRID-Geneva from the layers on annual mean temperature and annual precipitations provided in the products CHELSA V1.2 and CHELSA-[CMIP5]. CHELSA-[CMIP5] is a delta change climatological dataset for the years 2041-2060 and 2061- 2080 for mean monthly maximum temperatures, mean monthly minimum temperatures, monthly precipitation amounts, and several derived parameters. We use the delta change method by B-spline interpolation of anomalies (deltas) of the respective CMIP5 GCM dataset. Anomalies were interpolated between all CMIP5 grid cells and are then added (for temperature variables) or multiplied (in case of precipitation) to high resolution climate data from CHELSA V1.2. This method has the assumption that climate only varies on the scale of the coarser (CMIP5) dataset, and the spatial pattern (from CHELSA) is consistent over time. CHELSA- [CMIP5] does not take changing wind patterns, or temperature lapse rates into account, but rather expects them to be constant over time, and similar to the long term averages. CHELSA V1.2 (http://chelsa-climate.org/) is a high resolution (30 arc sec, ~1 km) climate data set for the earth land surface areas. It includes monthly and annual mean temperature and precipitation patterns for the time period 1979-2013. Methods are described in http://chelsa-climate.org/wp-admin/download-page/CHELSA_tech_specification.pdf. CHELSA Version 1.2 is licensed under a Creative Commons Attribution 4.0 International License. Specifications: High resolution (30 arcsec, ~1 km) Precipitation & Temperature Climatologies for the years 1979 – 2013 Incorporation of topoclimate (e.g. orographic rainfall & wind fields). All products of CHELSA are in a geographic coordinate system referenced to the WGS 84 horizontal datum, with the horizontal coordinates expressed in decimal degrees. The CHELSA layer extents (minimum and maximum latitude and longitude) are a result of the coordinate system inherited from the 1-arc-second GMTED2010 data which itself inherited the grid extent from the 1-arc-second SRTM data. Note that because of the pixel center referencing of the input GMTED2010 data the full extent of each CHELSA grid as defined by the outside edges of the pixels differs from an integer value of latitude or longitude by 0.000138888888 degree (or 1/2 arc-second). Users of products based on the legacy GTOPO30 product should note that the coordinate referencing of CHELSA (and GMTED2010) and GTOPO30 are not the same. In GTOPO30, the integer lines of latitude and longitude fall directly on the edges of a 30-arc-second pixel. Thus, when overlaying CHELSA with products based on GTOPO30 a slight shift of 1/2 arc-second will be observed between the edges of corresponding 30-arc-second pixels. To redistribute the data, please cite the following peer reviewed articles: <a href="https://www.nature.com/articles/sdata2017122"target=_blank>Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P. & Kessler, M. (2017) Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4, 170122.</a> <a href="https://doi.org/10.5061/dryad.kd1d4"target=_blank>Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P., Kessler, M. (2017) Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad Digital Repository. </a> CHELSA – Climatologies at high resolution for the Earth land surface areas. Version 1.2
-
This file provides the global biomass map produced with the EU FP7 GEOCARBON project (www.geocarbon.net) and presented by Avitabile et al. (2014) at the Global Vegetation Monitoring and Modeling, 3-7 February 2014, Avignon (France). The map is obtained by combining and harmonizing the pan-tropical biomass map by Avitabile et al. (2016) with the boreal forest biomass map by Santoro et al. (2015). The map covers only forest areas, where forest are defined as areas with dominance of tree cover in the GLC2000 map (Bartholomé and Belward, 2005). For a proper use and description of this dataset, please refer to the mentioned articles. Source: Avitabile, V., Herold, M., Lewis, S.L., Phillips, O.L., Aguilar-Amuchastegui, N., Asner, G. P., Brienen, R.J.W., DeVries, B., Cazzolla Gatti, R., Feldpausch, T.R., Girardin, C., de Jong, B., Kearsley, E., Klop, E., Lin, X., Lindsell, J., Lopez-Gonzalez, G., Lucas, R., Malhi, Y., Morel, A., Mitchard, E., Pandey, D., Piao, S., Ryan, C., Sales, M., Santoro, M., Vaglio Laurin, G., Valentini, R., Verbeeck, H., Wijaya, A., Willcock, S., 2014. Comparative analysis and fusion for improved global biomass mapping. Global Vegetation Monitoring and Modeling, 3 – 7 February 2014, Avignon (France) (https://colloque.inra.fr/gv2m) Based on data from: Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., Berry, N. J., Boeckx, P., de Jong, B. H. J., DeVries, B., Girardin, C. A. J., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y., Morel, A., Mitchard, E. T. A., Nagy, L., Qie, L., Quinones, M. J., Ryan, C. M., Ferry, S. J. W., Sunderland, T., Laurin, G. V., Gatti, R. C., Valentini, R., Verbeeck, H., Wijaya, A. and Willcock, S. (2016), An integrated pan-tropical biomass map using multiple reference datasets. Glob Change Biol, 22: 1406–1420. doi:10.1111/gcb.13139 Santoro, M., Beaudoin, A., Beer, C., Cartus, O., Fransson, J.E.S., Hall, R.J., Pathe, C., Schmullius, C., Schepaschenko, D., Shvidenko, A., Thurner, M. and Wegmüller, U. (2015). Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR. Remote Sensing of Environment, Vol. 168, pag. 316-334 Source: Avitabile V, Herold M, Heuvelink G, Lewis SL, Phillips OL, Asner GP et al. (2016). An integrated pan-tropical biomass maps using multiple reference datasets. Global Change Biology, 22: 1406–1420. doi:10.1111/gcb.13139.