From 1 - 8 / 8
  • Categories  

    Please visit bit.ly/1lMJ9zj for full information before downloading. These data is one version of the GIS global mangrove database (MFW). The database is 30 m pixel with global coverage annually for 2000 to 2014. This layer shows the information concerning the year 2000. Data are mangrove loss in the mangrove biome since 2000 as defined by MFW. CGMFC-21 provides high resolution local, regional, national, and global estimates of annual mangrove forest levels using continuous data from 2000 through to 2012 with the goal of driving mangrove research questions pertaining to biodiversity, climate change, food security, livelihoods, fisheries support, and conservation that have been hindered until now by a lack of suitable data. CGMFC-21 provides the required spatiotemporal resolutions to not only set REDD baseline measures globally in a systematic manner, but also to account for forest degradation as well as deforestation on an annual basis. Countries showing relatively high levels of 21st Century mangrove loss include Myanmar, Guatemala, Malaysia, Cambodia, and Indonesia. Many nations that have reported mangrove deforestation in earlier periods such as Ecuador, Bangladesh and Nigeria, have stabilized their mangrove levels during this period. Indonesia remains by far the largest mangrove holding nation containing between 26.16% and 28.50% of the global mangrove area with a deforestation rate of between 0.26% and 0.63% annually. Global mangrove deforestation continues but at a much reduced rate of between 0.16% and 0.39% annually. Annual mangrove deforestation is now close to zero in the Americas, Africa, and Australia as well as in selected Ramsar sites and protected areas. The global mangrove deforestation pattern during the 21st Century is one of decreasing rates of deforestation, with many nations essentially stable, with the exception of the largest mangrove holding region of Southeast Asia. (2015-09-01) Hamilton, S. E., & Casey, D. (2016). Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography, 25(6), 729-738. doi:10.1111/geb.1244. doi: 10.1111/geb.1244

  • Categories  

    Please visit bit.ly/1lMJ9zj for full information before downloading. These data is one version of the GIS global mangrove database (MFW). The database is 30 m pixel with global coverage annually for 2000 to 2014. This layer shows the information concerning the year 2014. Data are mangrove loss in the mangrove biome since 2000 as defined by MFW. CGMFC-21 provides high resolution local, regional, national, and global estimates of annual mangrove forest levels using continuous data from 2000 through to 2012 with the goal of driving mangrove research questions pertaining to biodiversity, climate change, food security, livelihoods, fisheries support, and conservation that have been hindered until now by a lack of suitable data. CGMFC-21 provides the required spatiotemporal resolutions to not only set REDD baseline measures globally in a systematic manner, but also to account for forest degradation as well as deforestation on an annual basis. Countries showing relatively high levels of 21st Century mangrove loss include Myanmar, Guatemala, Malaysia, Cambodia, and Indonesia. Many nations that have reported mangrove deforestation in earlier periods such as Ecuador, Bangladesh and Nigeria, have stabilized their mangrove levels during this period. Indonesia remains by far the largest mangrove holding nation containing between 26.16% and 28.50% of the global mangrove area with a deforestation rate of between 0.26% and 0.63% annually. Global mangrove deforestation continues but at a much reduced rate of between 0.16% and 0.39% annually. Annual mangrove deforestation is now close to zero in the Americas, Africa, and Australia as well as in selected Ramsar sites and protected areas. The global mangrove deforestation pattern during the 21st Century is one of decreasing rates of deforestation, with many nations essentially stable, with the exception of the largest mangrove holding region of Southeast Asia. (2015-09-01) Hamilton, S. E., & Casey, D. (2016). Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography, 25(6), 729-738. doi:10.1111/geb.1244. doi: 10.1111/geb.1244

  • Categories  

    The forest structural condition index is derived from the University of Maryland canopy cover, canopy height, and time since forest loss data sets. The index spans from short, open-canopy, recently disturbed forests to tall, closed canopy forests that have not been disturbed with the last 14 years. Forest stature and canopy cover are products of both the biophysical potential of a local site and of disturbance history. The tallest, most dense forests are found in settings with favorable climate and soils but with low levels if natural or human disturbance. Such forests have been shown to support high levels of biodiversity, store high levels of carbon, and be more resilient to climate variability. Our maps of forest structural condition are the first to identify locations in the humid tropics of tall, dense forests resulting from high biophysical potential and low disturbance rates.<br><br>Data are provided by the Montana State University for South America, Africa and Asia separately, and have been merged into a single dataset here.<br><br>License information: <a href "https://creativecommons.org/licenses/by/4.0/"> CC-4.0 Attribution</a>.<br/>

  • Categories  

    The forest integrrity index is derived by overlaying the human footprint (Venter et al. 2016) on the forest structural condition. The name is consistent with the concept of ecological integrity. Ecological integrity has been defined as, “the system’s capacity to maintain structure and ecosystem functions using processes and elements characteristic for its ecoregion.” (Parks Canada 2008).  This capacity is a result of the climate, soil, topography, biota and other biophysical properties of the ecoregion and the extent to which these properties are not altered by modern human pressures. Consistent with this definition, the forest integrity index is based on on the structural complexity of a stand relative to the natural potential of the ecoregion and level of human pressure. Thus, forest of high integrity are relatively tall, high in canopy cover, older, and with relatively low human pressure.  An increasing number of studies have shown that human pressure in various forms can have negative effects on native species.  Thus, high integrity forests may be uniquely important for conservation because they support species and processes that are require well-developed forests and are sensitive to human activities.  Such forests often also have high economic value and have likely been preferentially converted to more intense human land uses.  Thus, identifying remaining areas of high forest integrity is important for conservation planning.<br><br>Data is provided by Montana State University.<br/><br>License information: <a href "https://creativecommons.org/licenses/by/4.0/">CC-4.0 Attribution</a>.<br/>

  • Categories  

    The forest integrrity index is derived by overlaying the human footprint (Venter et al. 2016) on the forest structural condition. The name is consistent with the concept of ecological integrity. Ecological integrity has been defined as, “the system’s capacity to maintain structure and ecosystem functions using processes and elements characteristic for its ecoregion.” (Parks Canada 2008).  This capacity is a result of the climate, soil, topography, biota and other biophysical properties of the ecoregion and the extent to which these properties are not altered by modern human pressures. Consistent with this definition, the forest integrity index is based on on the structural complexity of a stand relative to the natural potential of the ecoregion and level of human pressure. Thus, forest of high integrity are relatively tall, high in canopy cover, older, and with relatively low human pressure.  An increasing number of studies have shown that human pressure in various forms can have negative effects on native species.  Thus, high integrity forests may be uniquely important for conservation because they support species and processes that are require well-developed forests and are sensitive to human activities.  Such forests often also have high economic value and have likely been preferentially converted to more intense human land uses.  Thus, identifying remaining areas of high forest integrity is important for conservation planning.<br><br>Data is provided by Montana State University.<br/><br>License information: <a href "https://creativecommons.org/licenses/by/4.0/">CC-4.0 Attribution</a>.<br/>

  • Categories  

    The forest integrrity index is derived by overlaying the human footprint (Venter et al. 2016) on the forest structural condition. The name is consistent with the concept of ecological integrity. Ecological integrity has been defined as, “the system’s capacity to maintain structure and ecosystem functions using processes and elements characteristic for its ecoregion.” (Parks Canada 2008).  This capacity is a result of the climate, soil, topography, biota and other biophysical properties of the ecoregion and the extent to which these properties are not altered by modern human pressures. Consistent with this definition, the forest integrity index is based on on the structural complexity of a stand relative to the natural potential of the ecoregion and level of human pressure. Thus, forest of high integrity are relatively tall, high in canopy cover, older, and with relatively low human pressure.  An increasing number of studies have shown that human pressure in various forms can have negative effects on native species.  Thus, high integrity forests may be uniquely important for conservation because they support species and processes that are require well-developed forests and are sensitive to human activities.  Such forests often also have high economic value and have likely been preferentially converted to more intense human land uses.  Thus, identifying remaining areas of high forest integrity is important for conservation planning.<br><br>Data is provided by Montana State University.<br/><br>License information: <a href "https://creativecommons.org/licenses/by/4.0/">CC-4.0 Attribution</a>.<br/>

  • Categories  

    The forest integrrity index is derived by overlaying the human footprint (Venter et al. 2016) on the forest structural condition. The name is consistent with the concept of ecological integrity. Ecological integrity has been defined as, “the system’s capacity to maintain structure and ecosystem functions using processes and elements characteristic for its ecoregion.” (Parks Canada 2008). This capacity is a result of the climate, soil, topography, biota and other biophysical properties of the ecoregion and the extent to which these properties are not altered by modern human pressures. Consistent with this definition, the forest integrity index is based on on the structural complexity of a stand relative to the natural potential of the ecoregion and level of human pressure. Thus, forest of high integrity are relatively tall, high in canopy cover, older, and with relatively low human pressure. An increasing number of studies have shown that human pressure in various forms can have negative effects on native species.  Thus, high integrity forests may be uniquely important for conservation because they support species and processes that are require well-developed forests and are sensitive to human activities.  Such forests often also have high economic value and have likely been preferentially converted to more intense human land uses.  Thus, identifying remaining areas of high forest integrity is important for conservation planning.<br><br>Data is provided by Montana State University.<br/><br>License information: <a href "https://creativecommons.org/licenses/by/4.0/" target="_blank">CC-4.0 Attribution</a>.<br/>

  • Categories  

    The distribution of forest biomass vertically and horizontally is an important predictor of biodiversity, disturbance risk, carbon storage, and hydrological flows. Human activities may alter the influence of forest structure on biodiversity through hunting, introducing non-native species, and altering disturbance regimes. The authors introduce two new remotely sensed indices describing forest structure and human pressure in tropical forests. The Forest Structural Condition Index (SCI) uses best existing global forest data sets to represent a gradient from low to high forest structure development. Remotely sensed estimates of canopy height, tree cover, and time since disturbance comprise inputs of the index. The index distinguishes short, open-canopy, or recently disturbed stands such as those recently deforested from tall, closed-canopy, older stands typical of primary of late secondary forest. The SCI was validated against estimates of foliage height diversity derived from airborne lidar and estimates of aboveground biomass derived from forest inventory plots. The Forest Integrity Index overlays an index of human pressure, the Human Footprint, on SCI to identify structurally complex forests with low human pressure that are likely to be most valuable for biodiversity and ecosystem services. The SCI and Forest Integrity Index are being used to assess progress for countries in reaching the 2020 forest fragmentation and connectivity targets under the Convention on Biodiversity. Broader potential applications include using the SCI and Forest Integrity as predictors of habitat quality, community richness, carbon storage, hydrological yield, and restoration of secondary forest.<br><br>This dataset is provided from the University of Montana through a partnerhsip with the NASA Biodiversity and Ecological Forecasting Program.<br/><br>License information: <a href "https://creativecommons.org/licenses/by/4.0/" target="_blank">CC-4.0 Attribution</a>.<br/>